For å generere Autoregressiv modell har vi kommandoen aryule (), og vi kan også bruke filtersEstimating AR-modellen. Men hvordan genererer jeg MA-modell For eksempel kan noen vise hvordan å generere MA (20) modell Jeg kunne ikke finne noen passende teknikk for å gjøre det. Støyen genereres fra et ikke-lineært kart Så, vil MA-modellen regres over epsilon-vilkår. Q1: Skal være svært nyttig hvis koden og funksjonen for en MA-modell er vist fortrinnsvis MA (20) ved hjelp av ovennevnte støymodell. Q2: Slik genererte jeg en AR (20) ved hjelp av tilfeldig støy, men vet ikke hvordan jeg bruker ovennevnte ligning som støy i stedet for å bruke rand for både MA og AR spurte Aug 15 14 klokka 17:30. Mitt problem er bruken av filter. Jeg er ikke kjent med Transfer-funksjonskonseptet, men du nevnte at teller B39s er MA-koeffisientene, slik at B skal være de 20 elementene og ikke A39s. Neste, la oss si at modellen har en avskjæring på 0,5, kan du gjerne vise med koden hvordan jeg kan lage en MA-modell med 0,5 avskjæring (hvordan nevner avskjæringen i filteret) og ved hjelp av inngangen som er definert i mitt spørsmål, takk, takk du for filterkoblingen, som virkelig fjernet tvil om hvordan du bruker filter. ndash SKM Aug 19 14 kl 16:36 I filtreringsfilteret (b, a, X) filtreres dataene i vektor X med filteret beskrevet av teller koeffisientvektoren b og nevner koeffisient vektor a. Hvis a (1) ikke er lik 1, normaliserer filteret koeffisientene med a (1). Hvis a (1) er lik 0, returnerer filter en error. quot (mathworkshelpmatlabreffilter. html) dette er problemområdet som jeg ikke forstår hvordan du spesifiserer a, b (filterkoeffisientene) når det er et avskjær på si 0,5 eller avlyss av 1.Kan du vennligst vis et eksempel på MA med filter og en ikke-null-avspilling ved hjelp av inngangen som jeg nevnte i Spørsmål ndash SKM Aug 19 14 klokka 17:45 Bruk MATLAB, hvordan finner jeg 3-dagers flytte gjennomsnittet av en bestemt kolonne av en matrise og legge til det bevegelige gjennomsnittet til den matrisen jeg prøver å beregne 3-dagers glidende gjennomsnitt fra bunn til toppen av matrisen. Jeg har oppgitt koden min: Gitt følgende matrise a og maske: Jeg har prøvd å implementere conv kommandoen, men jeg mottar en feil. Her er conv kommandoen jeg har prøvd å bruke på 2. kolonne av matrise a: Utgangen jeg ønsker er gitt i følgende matrise: Hvis du har noen forslag, vil jeg sette stor pris på det. Takk for kolonne 2 i matrisen a, beregner jeg 3-dagers glidende gjennomsnitt som følger og plasserer resultatet i kolonne 4 i matrise a (jeg omdøpt matrise a som 39desiredOutput39 bare for illustrasjon). 3-dagers gjennomsnittet av 17, 14, 11 er 14 det 3-dagers gjennomsnittet på 14, 11, 8 er 11 3-dagers gjennomsnittet av 11, 8, 5 er 8 og 3-dagers gjennomsnittet på 8, 5, 2 er 5. Det er ingen verdi i de nederste 2 radene for fjerde kolonne fordi beregningen for 3-dagers glidende gjennomsnitt begynner nederst. Den 39 ugyldige 39-utgangen vil ikke bli vist før minst 17, 14 og 11. Forhåpentligvis er dette fornuftig ndash Aaron 12. juni kl 13:28 Generelt vil det hjelpe hvis du vil vise feilen. I dette tilfellet gjør du to ting feil: Først må fellingen din divideres med tre (eller lengden på det bevegelige gjennomsnittet). For det andre, merk størrelsen på c. Du kan ikke bare passe inn i en. Den typiske måten å få et bevegelige gjennomsnitt på, ville være å bruke samme: men det ser ikke ut som du vil. I stedet er du tvunget til å bruke et par linjer: Først flyttende gjennomsnitt Simulink-handelsmodell til C-kildekode Først flyttende gjennomsnitt Simulink-handelsmodell til C-kildekode Endelig8230it er her fullstendig ende til slutt Visuell representasjon (opprettet i Matlab8217s Simulink og Stateflow) av Din handelsidee til C i alle operativsystemer, inkludert Windows, Linux eller Mac OSX. Av alle årene i å utforske og undersøke, er dette den ultimate måten å bygge ditt høyhastighets selvforsynte handelssystem. Derfor er jeg helt fokusert 100 på denne splitter nye tilnærmingen i motsetning til de andre støyende og distraherende tilnærmingene jeg ikke skal nevne. Ikke bare det, du kan ta samme visuelle modell og kode generere til noe maskinvarebeskrivelsesspråk (HDL) til din FPGA-produsent med VHDL eller Verilog. Som jeg ikke er ekspert i dette rommet, vil jeg legge det til ekspertene jeg har tilgang til å hjelpe når det trengs. Bare en FYI at FPGA er den ultra laveste latency mulig via spesialisert maskinvare. Jeg håper denne videoen bidrar til å demonstrere disse evnene. For de som er interessert i prøvefilene, kan de lastes ned via min ELITE Membership sektion n. Nå som denne metoden er fullført, kan vi gå videre til neste prototypeplan, noen virkelige strategier, for eksempel: Husk at denne forespørselen er også tilgjengelig: Alle fremtidige handelsstrategier utviklet via Simulink vil bli gitt til alle Quant Elite-medlemmer NOTE Jeg legger nå mine TRADING ALERTS i min personlige FACEBOOK ACCOUNT og TWITTER. Ikke bekymre deg fordi jeg ikke legger dumme kattevideoer eller hva jeg spiser Del dette: Om forfatteren Hei jeg der Mitt navn er Bryan Downing. Jeg er en del av et firma som heter QuantLabs. Dette er spesielt et selskap med en høy profilblogg om teknologi, handel, finans, investering, kvant, etc. Det legger inn ting om hvordan man kan jobbe intervjuer med store selskaper som Morgan Stanley, Bloomberg, Citibank , og IBM. Det legger også inn forskjellige unike tips og triks på Java, C eller C programmering. Det posterer om ulike teknikker når det gjelder å lære om Matlab og bygge modeller eller strategier. Det er mye her hvis du er i venturing inn i finansverdenen som kvant eller teknisk analyse. Det diskuterer også den fremtidige generasjonen av handel og programmering Spesialiteter: C, Java, C, Matlab, kvant, modeller, strategier, teknisk analyse, linux, windows P. S. Jeg har vært kjent for å være den verste maskinisten. Ikke bli fornærmet av det som jeg liker å knuse ting ut og sette priorty av hva jeg gjør over å skrive. Kanskje en dag kan jeg få en full tid kopi redaktør for å hjelpe. Gjør notat Jeg foretrekker videoer som de er mye lettere å produsere, så sjekk ut min mange video på youtubequantlabs Vil du handle som en boss Lær hvordan Algo Secrets kan forbedre livet ditt Din informasjon er 100 sikker med oss og vil aldri bli delt. Last ned movAv. m ( se også movAv2 - en oppdatert versjon som tillater vekting) Beskrivelse Matlab inkluderer funksjoner som kalles movavg og tsmovavg (tidsserier som beveger seg i gjennomsnitt) i Financial Toolbox, movAv er utformet for å replikere grunnleggende funksjonaliteten til disse. Koden her gir et godt eksempel på å administrere indekser i looper, som kan være forvirrende til å begynne med. Jeg har bevisst holdt koden kort og enkel å holde denne prosessen klar. movAv utfører et enkelt glidende gjennomsnitt som kan brukes til å gjenopprette støyende data i noen situasjoner. Det fungerer ved å ta et middel av inngangen (y) over et glidende tidvindu, hvis størrelse er spesifisert av n. Jo større n er, desto større er utjevningen av effekten av n i forhold til lengden på inngangsvektoren y. og effektivt (vel slags) skaper et lavpassfrekvensfilter - se avsnittet om eksempler og overveier. Fordi mengden av utjevning som tilbys av hver verdi av n er i forhold til lengden på inngangsvektoren, er den alltid verdt å teste forskjellige verdier for å se hva som passer. Husk også at n poeng går tapt på hvert gjennomsnitt hvis n er 100, inneholder de første 99 punktene i inngangsvektoren ikke nok data for et gjennomsnitt på 100pt. Dette kan unngås noe ved å stable gjennomsnitt, for eksempel, koden og grafen nedenfor, sammenligner en rekke vinduer med gjennomsnittlig lengde. Legg merke til hvor glatt 1010pt er sammenlignet med et enkelt 20pt gjennomsnitt. I begge tilfeller går 20 poeng i tap totalt. Opprett xaxis x1: 0.01: 5 Generer støystøyReps 4 støy repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) støy reshape (støy, 1, lengde (støy) noiseReps) Generer ydata støy yexp x) 10noise (1: lengde (x)) Gjennomsnittlig gjennomsnitt: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt y6 movAv (y, 100) 100 pt Plot-figurplot (x, y, y2, y3, y4, y5, y6) legenden (Rå data, 10pt glidende gjennomsnitt, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel y) tittel (Sammenligning av bevegelige gjennomsnittsverdier) movAv. m-kode gjennomgående funksjonsutgang movAv (y, n) Den første linjen definerer funksjonsnavn, innganger og utganger. Inngangen x skal være en vektor med data for å utføre gjennomsnittet, n skal være antall poeng som skal utføre gjennomsnittet over utgang vil inneholde gjennomsnittlig data returnert av funksjonen. Preallocate output outputNaN (1, numel (y)) Finn midtpunkt for n midPoint runde (n2) Hovedarbeidet av funksjonen er gjort i forløp, men før du starter, blir to ting forberedt. For det første er produksjonen forhåndsallokert som NaNs, dette tjente to formål. For det første er forallokering generelt god praksis, da det reduserer minnesjonglingen Matlab må gjøre, for det andre gjør det veldig enkelt å sette de gjennomsnittlige dataene i en utgang i samme størrelse som inngangsvektoren. Dette betyr at den samme xaxis kan brukes senere for begge, noe som er praktisk for plotting, alternativt kan NaNs fjernes senere i en linje med kode (utdatautgang (Den variable midpoint vil bli brukt til å justere dataene i utgangsvektoren. n 10, vil 10 poeng gå tapt fordi for de første 9 poengene til inngangsvektoren er det ikke nok data til å ta et 10-punkts gjennomsnitt. Da utgangen vil bli kortere enn inngangen, må den justeres riktig. bli brukt, slik at en lik mengde data går tapt ved start og slutt, og inngangen holdes justert med utgangen av NaN buffere opprettet ved preallokering av utgang. For en 1: lengde (y) - n Finn indeksområdet for å ta gjennomsnitt over (a: b) forbud Beregn gjennomsnittlig utgang (amidPoint) gjennomsnittlig (y (a: b)) ende I selve for-linjen blir et gjennomsnitt tatt over hvert påfølgende segment av inngangen. Sløyfen løper for a. definert som 1 opp til lengden på inngangen (y), minus dataene som vil gå tapt (n). Hvis inngangen er 100 poeng lo ng og n er 10, vil løkken løpe fra (a) 1 til 90. Dette betyr at den første indeksen til segmentet blir gjennomsnittlig. Den andre indeksen (b) er ganske enkelt an-1. Så på den første iterasjonen, a1. n10. så b 11-1 10. Det første gjennomsnittet er tatt over y (a: b). eller x (1:10). Gjennomsnittet for dette segmentet, som er en enkelt verdi, lagres i produksjonen på indeksen amidPoint. eller 156. På den andre iterasjonen, a2. b 210-1 11. så er gjennomsnittet tatt over x (2:11) og lagret i utgang (7). På den siste iterasjonen av løkken for en inngang på lengde 100, a91. b 9010-1 100, slik at gjennomsnittet blir tatt over x (91: 100) og lagret i utgang (95). Dette etterlater produksjonen med totalt n (10) NaN-verdier ved indeks (1: 5) og (96: 100). Eksempler og overveier Flytte gjennomsnitt er nyttige i noen situasjoner, men de er ikke alltid det beste valget. Her er to eksempler hvor de ikke nødvendigvis er optimale. Mikrofonkalibrering Dette datasettet representerer nivåene av hver frekvens produsert av en høyttaler og registrert av en mikrofon med en kjent lineær respons. Høyttalerenes utgang varierer med frekvens, men vi kan korrigere for denne variasjonen med kalibreringsdataene. Utgangen kan justeres på nivå for å ta hensyn til svingningene i kalibreringen. Legg merke til at rådataene er støyende - det betyr at en liten endring i frekvens ser ut til å kreve en stor, uregelmessig, endring i nivå for å ta hensyn til. Er dette realistisk eller er dette et produkt av opptaksmiljøet. Det er i dette tilfellet rimelig å bruke et glidende gjennomsnitt som jevner ut nivåfrekvenskurven for å gi en kalibreringskurve som er litt mindre uregelmessig. Men hvorfor er dette ikke det beste i dette eksemplet Flere data ville være bedre - flere kalibreringer går i gjennomsnitt sammen vil ødelegge støyen i systemet (så lenge det er tilfeldig) og gi en kurve med mindre subtile detaljer tapt. Det bevegelige gjennomsnittet kan kun omtrentliggjøre dette, og kan fjerne noen høyere frekvensdips og topper fra kurven som virkelig eksisterer. Sinbølger Ved å bruke et glidende gjennomsnitt på sinusbølger fremheves to poeng: Det generelle spørsmålet om å velge et rimelig antall poeng for å utføre gjennomsnittet over. Det er enkelt, men det er mer effektive metoder for signalanalyse enn gjennomsnittlig oscillerende signaler i tidsdomene. I denne grafen er den opprinnelige sinusbølgen plottet i blått. Støy er lagt til og tegnet som oransje kurven. Et glidende gjennomsnitt utføres på forskjellige antall punkter for å se om den opprinnelige bølgen kan gjenvinnes. 5 og 10 poeng gir rimelige resultater, men fjerner ikke støyen helt, hvor like større antall poeng begynner å miste amplitudedetalj som gjennomsnittet strekker seg over forskjellige faser (husk at bølgen oscillerer rundt null og mener (-1 1) 0) . En alternativ tilnærming ville være å konstruere et lavpassfilter enn det som kan påføres signalet i frekvensdomenet. Jeg kommer ikke til å gå i detalj som det går ut over omfanget av denne artikkelen, men da støyen er betydelig høyere frekvens enn bølgenees grunnfrekvens, ville det være ganske enkelt i dette tilfellet å konstruere et lavpassfilter enn å fjerne høyfrekvensen bråk.
Comments
Post a Comment